
Globally Optimal Audio Partitioning

Eric Nichols
Dept. of Computer Science, Indiana Univ.

epnichol@indiana.edu

Christopher Raphael
School of Informatics, Indiana Univ.

craphael@indiana.edu

Abstract
We present a technique for partitioning an audio file

into maximally-sized segments having nearly uniform spec-
tral content, ideally corresponding to notes or chords. Our
method uses dynamic programming to globally optimize a
measure of simplicity or homogeneity of the intervals in the
partition. Here we have focused on an entropy-like mea-
sure, though there is considerable flexibility in choosing
this measure. Experiments are presented for several musical
scenarios. 1

Keywords: audio partitioning, dynamic programming

1. Introduction
The signal-to-score problem seeks to represent symbolically
the content of a music audio file. While there are many
ways in which the problem can be posed, perhaps the most
ambitious seeks a representation that captures the most im-
portant elements of Western music notation including pitch,
rhythm, and voice. Given the significant difficulty of this
goal, several simpler problems have been considered in-
cluding signal-to-midi, which does not attempt to attribute
rhythm or voice to the recognized pitches; monophonic; or
polyphonic single-instrument transcription [1], [2], [3], [4].
While the choice of problem is a difficult one, the relevant
tradeoffs seem clear: simpler problem statements reduce the
complexity of what we seek to estimate and are usually eas-
ier; on the other hand one hopes that with a richer interpre-
tation of the musical content, some elements which are less
ambiguous will help to reinforce a correct interpretation of
those that are more ambiguous.

We explore here a relatively simple problem statement
which could as easily be viewed as a preprocessing tech-
nique as recognition. We seek to partition the audio into
segments having nearly constant spectral properties and thus
likely to represent single notes or chords.

Our goal is motivated, in part, by the well-known trade-
offs between time and frequency resolution faced when

1 This material is based upon work supported by the National
Science Foundation under Grant No. IIS-0534694 and the Center
for Research on Concepts and Cognition at Indiana University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

choosing the length of a Fourier transform: to make pre-
cise estimates of underlying frequencies, and hence pitch,
one wants to use longer analysis segments. However, if a
segment overlaps note boundaries, our interpretation of the
spectral content is confounded. Thus in this analysis we
seek the longest variable-length segments possible that do
not overlap note boundaries. In exploring tradeoffs within
this effort we hope to oversegment rather than underseg-
ment the data, so that each recognized segment does not
cross note boundaries. While such a segmentation could be
used to provide useful pitch and rhythmic analysis of the
audio data, it could also be used simply as a means of lo-
cating reasonable “frames” for more sophisticated analysis.
Such frames would provide better frequency resolution due
to their maximally long nature.

2. Partitioning through Optimization
Our basic approach is to choose a partition of the data that
optimizes some objective function measuring the overall ap-
propriateness of the partition. In particular, our approach is
based on dynamic programming, and requires our objective
function to be expressed as a sum of contributions, each de-
pending only on a single interval of the partition. To be
specific, suppose we view our audio data as a collection of
M frames, each of length N samples with actual samples
s0, . . . , sNM−1. Let b0 < b1 < . . . < bn be a sequence of
breakpoints partitioning the audio data into a collection of
segments. We write (bk−1, bk) for the sequence of samples
sNbk−1

, . . . , sNbk−1 and we assume b0 = 0 and bn = M . If
H(bk−1, bk) is our measure of the quality of the particular
interval, then the overall measure of the partition is given by

H(b0, . . . , bn) =

n
∑

k=1

H(bk−1, bk)

A simple dynamic programming argument shows that we
can compute the optimal partition recursively. Let H∗(b) be
the score of the optimal partition of the audio data (0, b).
The optimal partition of (0, b) must either be the unparti-
tioned interval or it must be composed of the optimal parti-
tion of of (0, a) with the additional interval (a, b) appended
for some a < b. The usual idea of dynamic programming
then leads to

H∗(b) =
b−1

min
a=0

H∗(a) + H(a, b) (1)

where the case of a single interval is accounted for by the
a = 0 case (we define H∗(0) = 0).

The recursion can be modified to find the best partition
into intervals (a, b) where lmin ≤ b − a ≤ lmax by redefin-
ing H(a, b) = ∞ when b − a < lmin or b − a > lmax.
Restricting the minimum size of intervals has the benefit of
excluding intervals too short to reasonably be a note, while
restricting the maximum size decreases the number of inter-
vals on which we must compute H(a, b) — overwhelmingly
the main cost in implementing the algorithm.

A simple modification of the algorithm instead mini-
mizes

H(b0, . . . , bn) =

n−1
∑

k=0

H(bk, bk+1) + nλ

where we have added the penalty λ for each interval in
the partition, thereby encouraging explanations involving as
few intervals as possible. The penalized version of the ob-
jective function is minimized with the recursion

H∗(b) =
b−1

min
a=0

H∗(a) + H(a, b) + λ1a6=0 (2)

where the latter term is 1 only when a 6= 0.
Our algorithm for finding optimal partitions is well-

known in the literature [5] and is almost a canonical example
of dynamic programming. The time complexity of the algo-
rithm is clearly O(M2) since each possible interval must be
considered once in Eqn.1. However, if we restrict the maxi-
mal interval size, then the algorithm is O(M).

3. Minimizing Entropy
Our measure of the quality of a partition is defined in terms
of Fourier transforms. Suppose our sequence of M frames
is partitioned into several contiguous sections f1, . . . fn of
lengths l1, . . . , ln with l1 + . . . ln = M . Here the fk are the
actual sample vectors corresponding to the intervals. Sup-
pose we take the finite Fourier transform of each fk yielding
k transforms F1, . . . , Fk. The Parseval relation assures us
that the total energy in is preserved between each (fk, Fk)
pair:

∑

i

f2
k (i) =

∑

j

|Fk(j)|2 (3)

Consequently, if we sum the energy over all cells of the par-
tition we see

∑

i,k

f2
k (i) =

∑

j,k

|Fk(j)|2 (4)

Since the left hand side is simply a constant — the total sum
of squares of the audio data, which is independent of choice
of partition — the right hand side must also be independent
of the choice of partition.

Our goal is to choose a partition so that Fk cluster their
energy in as compact a way as possible. For this purpose we

Figure 1. Top: Merging similar frames results in reduced en-
tropy. Bot: Merging dissimilar frames results in increased or
equivalent entropy.

choose to minimize the entropy over all partitions defined as

H = −
∑

j,k

|Fk(j)|2 log2(|Fk(j)|2)

While it might seem more natural to define the entropy on
the version of |Fk(j)|2 normalized to sum to 1, as the usual
definition does, the result of minimizing either entropy over
the partition choice will be the same due to Eqn. 4.

Figure 1 gives an intuitive explanation of why minimiz-
ing entropy might lead to reasonable partitions. In the top
panel of this figure, the left hand member shows a cartoon-
like picture of |Fk(j)|2 over a series of several consecutive
original (unconcatenated) frames, all contained within a sin-
gle musical note. While there may well be many harmonics
in the spectra, for simplicity’s sake we focus on a single one,
the horizontal strip in the left-hand-side of the figure. Now
suppose we concatenate these frames into one large frame
as in the right-hand member of the figure. Clearly the en-
tropy will be smaller for the right-hand member since we
have concentrated all the energy on a single “pixel.” Note
that the number of pixels is the same in both cases. Thus the
energy minimizing partition tends to merge frames corre-
sponding to the same note or chord, since this leads to lower
entropy.

In the bottom panel of Figure 1 we contemplate the
merge of neighboring frames corresponding to different
notes or chords. While each of these are represented hor-
izontally as “one-pixel-wide” spectra, each frame might be
the result of several merges at some earlier stage. The re-
sult of merging these two frames results in the spectrum on
the right. Note that both cases concentrate the energy on the

same number of pixels, suggesting that the entropy measure
is indifferent to whether or not we merge here. However,
a more lifelike version of this situation would reveal that
peaks in the right-hand spectrum will be more spread out
than in the left-hand side, due to the finer resolution of the
Fourier transform. For this reason the entropy criterion will
tend to favor the situation on the left, as is consistent with
our goal.

While the experiments presented herein use the entropy
measure as the objective function to be minimized, other
reasonable choices are possible and worthy of further study.
One of the other objective functions we have considered is
based on conditional entropy — the partition that minimizes

G(b0, . . . , bn) =
n

∑

k=1

H ′(bk−1, bk)E(bk−1, bk) + nλ

where H ′(bk−1, bk) is the entropy of the squared frequency
energy of segment (bk−1, bk), normalized to sum to one, and
E(bk−1, bk) is the total squared energy in the segment.

The other measure we have considered is based on au-
toregression and is defined by

G(b0, . . . , bn) =

n
∑

k=1

A(bk−1, bk) + nλ

where A(bk−1, bk) is the total residual squared error when
an autoregressive model of fixed order is fit to the data in
(bk−1, bk).

4. Experimental Results
We implemented the dynamic programming algorithm de-
scribed above in the C language. All experiments were per-
formed on a 2.1 GHz Linux PC. Audio inputs were record-
ings of musical performances subsequently sampled down
to 8 kHz mono audio. We fixed the frame size N to 256
samples for all experiments. The Fast Fourier Transform
(FFT) was used to speed up entropy calculations.

Because the FFT algorithm used requires the number of
sample points to be a power of two, whereas our partition
segments are not so constrained, we use the standard tech-
nique of zero-padding the data to the required size. Adding
these additional data points has the effect of interpolating
the FFT over the entire set of frequency bins as well as
shrinking the magnitudes so that the squared norm (Eqn. 3)
is preserved. Entropy is not preserved during zero-padding;
however, we can approximate the desired non-zero-padded
entropy by

H =
∑

j,k

|Fk(j)|2 log2

(

|Fk(j)|2
J ′

J

)

(5)

where J is the number of samples and J ′ = 2dlog2
Je is the

size of the zero-padded data.

To speed up experimentation, the program precomputes
H(a, b) for all possible pairs of breakpoints subject to a < b

and b−a ≤ lmax and stores the results on disk. For two min-
utes of audio, this computation would take approximately
18 minutes with lmax set to 100. If desired the performance
could be improved by approximating longer FFTs based on
shorter FFT results. Once the entropy values were recorded,
they were used in multiple experiments by the dynamic pro-
gramming algorithm for a range of values for parameters λ

and lmin. Each computation of an optimal partition via the
dynamic programming algorithm took a negligible amount
of time when using the precomputed H(a, b) values.

We used the program to compute optimal partitions for
several polyphonic audio examples, including recordings of
two Chopin Preludes (Op. 28, Nos. 7 and 20), and Mvt. 1 of
the Schostakovich String Quartet No. 3, Op. 73, henceforth
chopin7, chopin20, and schostakovich. Figures 2,
3, and 4 show partitions generated by the algorithm for each
of these examples. 2 Each figure displays a spectrogram of
the data with vertical lines indicating breakpoints found by
the algorithm. Particular values of λ selected for each file to
obtain these results were 0, 0.1, and 0.01, respectively.

Figure 2. Section of Chopin Prelude No. 7, Op. 28

Figure 2 compares the algorithm results (partitions in
the top half of the figure) with the true note onset times
(bottom half of the figure). Many of the note onsets cor-
respond exactly with the generated partitions. Repeated
chords are a common omission in our results, as are note
onsets where previous notes are sustained over the new en-
try. In the chopin20 results we find that overpartitioning
often breaks chords up into a segment during the attack por-
tion and a segment after the chord has decayed substantially.
For the schostakovich partition we see that some qui-
eter notes in the strings are grouped together into underpar-
titioned segments.

2 Audio files of these results in .wav format are available
online at http://xavier.informatics.indiana.edu/
˜craphael/ismir06/. The partitions generated by the algo-
rithm are represented by audible clicks in these files.

Figure 3. Section of Chopin Prelude No. 20, Op. 28

Figure 4. Section of Schostakovich String Quartet No. 3

For each experiment we have an important choice of the
penalty parameter λ as well as selection of the allowed range
of partition sizes specified by lmin and lmax. Typical values
of lmax for our experiments were 100 or 200 frames, se-
lected to reduce computation time while ensuring that the
longest notes in each experiment would still fit within a sin-
gle interval of a partition. lmin, on the other hand, was set to
4 frames for each experiment, corresponding to the shortest
sixteenth notes in the chopin7 example.

Different audio recordings yield different characteristic
entropy values. To choose a “good” λ for a particular input,
we would search for a value that resulted in neither serious
overpartitioning (suggested by a prevalence of breakpoints
separated by lmin) or underpartitioning (indicated by break-
points separated by lmax). We would aim for a value of λ

that tended to slightly overpartition the data. Serious over-
partitioning was not always a possibility; for example, the
“best” λ turned out to be 0 for chopin7. Typically we
would find a good result with λ < 1. The problem of λ

selection merits further study, although we know that the
relationship between λ and the number of intervals in the

0.
00

00
0.

00
02

0.
00

04

Sq
ua

re
 M

ag
ni

tu
de

Figure 5. Spectrum of frame 240.

0.
00

0
0.

00
1

0.
00

2
0.

00
3

Sq
ua

re
 M

ag
ni

tu
de

Figure 6. Spectrum of frames 227-259.

partition may be understood by thinking of λ as specifying
a “geometric prior” on the number of breakpoints [5].

5. Conclusion
The goal of entropy-driven audio partitioning is to segment
audio input in a manner that maximizes the amount of con-
sistent information within a segment. Fourier transforms of
larger segments should provide a more precise characteriza-
tion of frequency distribution. As an example of the util-
ity of our technique, consider the partial spectrum from one
frame of the schostakovich data in Figure 5. This sin-
gle frame is included in a 33-frame long segment in the par-
tition computed above; Figure 6 shows the spectrum com-
puted from this longer segment. The peaks are much more
well-defined due to the improved frequency resolution, and
as such may be more amenable to analysis by other audio
processing algorithms.

References
[1] Saito S., Kameoka H., Nishimoto T., Sagayama S., “Spec-

murt Analysis of Multi-Pitch Music Signals with Adap-
tive Estimation of Common Harmonic Structure,” Proc. Int.
Symp. Music Info. Retrieval, 2005, pp. 84–91, London UK.

[2] Klapuri A., “Multiple Fundamental Frequency Estimation by
Harmonicity and Spectral Smoothness,” IEEE Trans. Speech
and Audio Processing, 11(6), 804-816, 2003.

[3] Cemgil A. T., Kappen H. J. , Barber D. “A Generative
Model for Music Transcription,” IEEE Transactions on Au-
dio, Speech and Language Processing 14(2), March 2006.

[4] Kapanci E., Pfeffer A., “Signal-to-Score Music Transcrip-
tion Using Graphical Models,” Proc. 19th Int. Joint Conf. on
Artif. Intel (IJCAI), 2005, Edinburgh, UK.

[5] B. Jackson, J. D. Scargle, D. Barnes, et al., “An algorithm
for optimal partitioning of data on an interval”, IEEE Signal
Processing Letters, vol 12, no. 2, pp. 105–108, Feb. 2005.

